Basic data types
Like most languages, Python has a number of basic types including integers, floats, booleans, and strings. These data types behave in ways that are familiar from other programming languages.
Numbers
Integers and floats work the same as in other languages
x = 3 print(type(x)) # Prints "<class 'int'>" print(x) # Prints "3" print(x + 1) # Addition; prints "4" print(x - 1) # Subtraction; prints "2" print(x * 2) # Multiplication; prints "6" print(x ** 2) # Exponentiation; prints "9" x += 1 print(x) # Prints "4" x *= 2 print(x) # Prints "8" y = 2.5 print(type(y)) # Prints "<class 'float'>" print(y, y + 1, y * 2, y ** 2) # Prints "2.5 3.5 5.0 6.25"
Note that unlike many languages, Python does not have unary increment (x++
) or decrement (x--
) operators.
Python also has built-in types for complex numbers; you can find all of the details in the documentation.
Booleans
Python implements all of the usual operators for Boolean logic, but uses English words rather than symbols (&&
, ||
, etc.)
t = True f = False print(type(t)) # Prints "<class 'bool'>" print(t and f) # Logical AND; prints "False" print(t or f) # Logical OR; prints "True" print(not t) # Logical NOT; prints "False" print(t != f) # Logical XOR; prints "True"
Strings
Python has great support for strings
hello = 'hello' # String literals can use single quotes world = "world" # or double quotes; it does not matter. print(hello) # Prints "hello" print(len(hello)) # String length; prints "5" hw = hello + ' ' + world # String concatenation print(hw) # prints "hello world" hw12 = '%s %s %d' % (hello, world, 12) # sprintf style string formatting print(hw12) # prints "hello world 12"
String objects have a bunch of useful methods; for example:
s = "hello" print(s.capitalize()) # Capitalize a string; prints "Hello" print(s.upper()) # Convert a string to uppercase; prints "HELLO" print(s.rjust(7)) # Right-justify a string, padding with spaces; prints " hello" print(s.center(7)) # Center a string, padding with spaces; prints " hello " print(s.replace('l', '(ell)')) # Replace all instances of one substring with another; # prints "he(ell)(ell)o" print(' world '.strip()) # Strip leading and trailing whitespace; prints "world"
Containers
Python includes several built-in container types: lists, dictionaries, sets, and tuples.
Lists
A list is the Python equivalent of an array, but is resizable and can contain elements of different types:
xs = [3, 1, 2] # Create a list print(xs, xs[2]) # Prints "[3, 1, 2] 2" print(xs[-1]) # Negative indices count from the end of the list; prints "2" xs[2] = 'foo' # Lists can contain elements of different types print(xs) # Prints "[3, 1, 'foo']" xs.append('bar') # Add a new element to the end of the list print(xs) # Prints "[3, 1, 'foo', 'bar']" x = xs.pop() # Remove and return the last element of the list print(x, xs) # Prints "bar [3, 1, 'foo']"
Slicing: In addition to accessing list elements one at a time, Python provides concise syntax to access sublists; this is known as slicing:
nums = list(range(5)) # range is a built-in function that creates a list of integers print(nums) # Prints "[0, 1, 2, 3, 4]" print(nums[2:4]) # Get a slice from index 2 to 4 (exclusive); prints "[2, 3]" print(nums[2:]) # Get a slice from index 2 to the end; prints "[2, 3, 4]" print(nums[:2]) # Get a slice from the start to index 2 (exclusive); prints "[0, 1]" print(nums[:]) # Get a slice of the whole list; prints "[0, 1, 2, 3, 4]" print(nums[:-1]) # Slice indices can be negative; prints "[0, 1, 2, 3]" nums[2:4] = [8, 9] # Assign a new sublist to a slice print(nums) # Prints "[0, 1, 8, 9, 4]"
Loops: You can loop over the elements of a list like this:
animals = ['cat', 'dog', 'monkey'] for animal in animals: print(animal) # Prints "cat", "dog", "monkey", each on its own line.
If you want access to the index of each element within the body of a loop, use the built-in enumerate
function:
animals = ['cat', 'dog', 'monkey'] for idx, animal in enumerate(animals): print('#%d: %s' % (idx + 1, animal)) # Prints "#1: cat", "#2: dog", "#3: monkey", each on its own line
List comprehensions: When programming, frequently we want to transform one type of data into another. As a simple example, consider the following code that computes square numbers:
nums = [0, 1, 2, 3, 4] squares = [] for x in nums: squares.append(x ** 2) print(squares) # Prints [0, 1, 4, 9, 16]
You can make this code simpler using a list comprehension:
nums = [0, 1, 2, 3, 4] squares = [x ** 2 for x in nums] print(squares) # Prints [0, 1, 4, 9, 16]
List comprehensions can also contain conditions:
nums = [0, 1, 2, 3, 4] even_squares = [x ** 2 for x in nums if x % 2 == 0] print(even_squares) # Prints "[0, 4, 16]"
Dictionaries
A dictionary stores (key, value) pairs, similar to a Map
in Java or an object in Javascript. You can use it like this:
d = {'cat': 'cute', 'dog': 'furry'} # Create a new dictionary with some data print(d['cat']) # Get an entry from a dictionary; prints "cute" print('cat' in d) # Check if a dictionary has a given key; prints "True" d['fish'] = 'wet' # Set an entry in a dictionary print(d['fish']) # Prints "wet" # print(d['monkey']) # KeyError: 'monkey' not a key of d print(d.get('monkey', 'N/A')) # Get an element with a default; prints "N/A" print(d.get('fish', 'N/A')) # Get an element with a default; prints "wet" del d['fish'] # Remove an element from a dictionary print(d.get('fish', 'N/A')) # "fish" is no longer a key; prints "N/A"
Loops: It is easy to iterate over the keys in a dictionary:
d = {'person': 2, 'cat': 4, 'spider': 8} for animal in d: legs = d[animal] print('A %s has %d legs' % (animal, legs)) # Prints "A person has 2 legs", "A cat has 4 legs", "A spider has 8 legs"
If you want access to keys and their corresponding values, use the items
method:
d = {'person': 2, 'cat': 4, 'spider': 8} for animal, legs in d.items(): print('A %s has %d legs' % (animal, legs)) # Prints "A person has 2 legs", "A cat has 4 legs", "A spider has 8 legs"
Dictionary comprehensions: These are similar to list comprehensions, but allow you to easily construct dictionaries. For example:
nums = [0, 1, 2, 3, 4] even_num_to_square = {x: x ** 2 for x in nums if x % 2 == 0} print(even_num_to_square) # Prints "{0: 0, 2: 4, 4: 16}"
Sets
A set is an unordered collection of distinct elements. As a simple example, consider the following:
animals = {'cat', 'dog'} print('cat' in animals) # Check if an element is in a set; prints "True" print('fish' in animals) # prints "False" animals.add('fish') # Add an element to a set print('fish' in animals) # Prints "True" print(len(animals)) # Number of elements in a set; prints "3" animals.add('cat') # Adding an element that is already in the set does nothing print(len(animals)) # Prints "3" animals.remove('cat') # Remove an element from a set print(len(animals)) # Prints "2"
Loops: Iterating over a set has the same syntax as iterating over a list; however since sets are unordered, you cannot make assumptions about the order in which you visit the elements of the set:
animals = {'cat', 'dog', 'fish'} for idx, animal in enumerate(animals): print('#%d: %s' % (idx + 1, animal)) # Prints "#1: fish", "#2: dog", "#3: cat"
Set comprehensions: Like lists and dictionaries, we can easily construct sets using set comprehensions:
from math import sqrt nums = {int(sqrt(x)) for x in range(30)} print(nums) # Prints "{0, 1, 2, 3, 4, 5}"
Tuples
A tuple is an (immutable) ordered list of values. A tuple is in many ways similar to a list; one of the most important differences is that tuples can be used as keys in dictionaries and as elements of sets, while lists cannot. Here is a trivial example:
d = {(x, x + 1): x for x in range(10)} # Create a dictionary with tuple keys t = (5, 6) # Create a tuple print(type(t)) # Prints "<class 'tuple'>" print(d[t]) # Prints "5" print(d[(1, 2)]) # Prints "1"
Functions
Python functions are defined using the def
keyword. For example:
def sign(x): if x > 0: return 'positive' elif x < 0: return 'negative' else: return 'zero' for x in [-1, 0, 1]: print(sign(x)) # Prints "negative", "zero", "positive"
We will often define functions to take optional keyword arguments, like this:
def hello(name, loud=False): if loud: print('HELLO, %s!' % name.upper()) else: print('Hello, %s' % name) hello('Bob') # Prints "Hello, Bob" hello('Fred', loud=True) # Prints "HELLO, FRED!"
Classes
The syntax for defining classes in Python is straightforward:
class Greeter(object): # Constructor def __init__(self, name): self.name = name # Create an instance variable # Instance method def greet(self, loud=False): if loud: print('HELLO, %s!' % self.name.upper()) else: print('Hello, %s' % self.name) g = Greeter('Fred') # Construct an instance of the Greeter class g.greet() # Call an instance method; prints "Hello, Fred" g.greet(loud=True) # Call an instance method; prints "HELLO, FRED!"